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70-543, México DF 04510, Mexico

E-mail: denjoe@stp.dias.ie, sgarciaj@uaeh.reduaeh.mx and stephens@nucleares.unam.mx

Received 4 September 2006
Published 17 January 2007
Online at stacks.iop.org/JPhysA/40/901

Abstract
Using an environmentally friendly renormalization we derive, from an
underlying field theory representation, a formal expression for the equation of
state, y = f (x), that exhibits all desired asymptotic and analyticity properties
in the three limits x → 0, x → ∞ and x → −1. The only necessary inputs
are the Wilson functions γλ, γϕ and γϕ2 , associated with a renormalization of
the transverse vertex functions. These Wilson functions exhibit a crossover
between the Wilson–Fisher fixed point and the fixed point that controls the
coexistence curve. Restricting to the case N = 1, we derive a one-loop
equation of state for 2 < d < 4 naturally parameterized by a ratio of nonlinear
scaling fields. For d = 3 we show that a non-parameterized analytic form
can be deduced. Various asymptotic amplitudes are calculated directly from
the equation of state in all three asymptotic limits of interest and comparison
made with known results. By positing a scaling form for the equation of state
inspired by the one-loop result, but adjusted to fit the known values of the critical
exponents, we obtain better agreement with known asymptotic amplitudes.

PACS number: 64.60.Ak

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The universal equation of state for the Landau–Ginzburg–Wilson O(N) model remains a
subject of great interest (see, for instance, [1, 11] for recent reviews). Its calculation from
first principles is much more difficult than the calculation of other universal quantities, such
as critical exponents or amplitude ratios, as it exhibits crossover behaviour between three
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distinct, asymptotic regimes—the critical region when approached from the critical isotherm,
or when approached along the critical isochor, and the coexistence curve. Maintaining the
correct analyticity properties of the equation of state in all these three distinct regimes has not
been possible within the confines of first principle calculations, such as from a field-theoretic,
microscopic Hamiltonian. Rather, appeal has been made to a parameterized phenomenological
scaling ansatz [13] that exhibits the right asymptotics, the underlying microscopic theory then
being used to fix various free parameters that exist in the ansatz.

In this paper we use a renormalization group methodology—environmentally friendly
renormalization [9]—based only on an underlying Landau–Ginzburg–Wilson Hamiltonian
and without the need for any phenomenological ansatz, to derive an equation of state that
exhibits all desired analyticity properties in the three distinct asymptotic regimes.

2. The equation of state

As first noted by Widom [7], in the critical region, the equation of state is a homogeneous
function relating an external magnetic field H, the reduced temperature t, and the magnetization
ϕ, which can be expressed by

y = f (x) (1)

where f (x) is universal, the scaling variables y and x are y = Bδ
cH/ϕδ and x = B1/β t/ϕ1/β ,

and Bc and B are non-universal amplitudes associated with the behaviour on the critical
isotherm t = 0 and the coexistence curve t < 0,H = 0.

The scaling function f (x) is normalized such that f (0) = 1 on the critical isotherm, and
f (−1) = 0 on the coexistence curve. Several properties of the universal equation of state are
known rigorously. For instance, it is known that f (x) has a regular Taylor expansion around
the limit x = 0 given by

f (x) = 1 +
∞∑

n=1

f 0
n xn, (2)

while in the limit x → ∞, by Griffith’s analyticity, one has an expansion of the form

f (x) = xγ

∞∑
n=0

f ∞
n x−2nβ . (3)

In the limit x → ∞ a natural variable is z = b1ϕ/tβ , where b1 = (−C+
4

/
(C+)

3)1/2
and

the C+
2n are the amplitudes of the 2n-point correlation functions for T > Tc, C

+ being the
amplitude of the susceptibility. In terms of z the equation of state takes the form

H = −(−C+
/
C+

4

)1/2
tβδF (z), (4)

where the universal scaling function F(z) for small z has an expansion of the form

F(z) = z +
1

6
z3 +

∞∑
n=3

r2n

(2n − 1)!
z2n−1, (5)

where r2 = r4 = 1 by choice of normalization. As (5) is an expansion in ϕ, the constants
r2n are related to the 2n-point correlation functions at ϕ = 0 and hence are very natural
observables to calculate in lattice simulations. In the limit z → ∞, F (z) has an expansion of
the form

F(z) = zδ

∞∑
k=0

F∞
k z−k/β . (6)
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The universal scaling functions f (x) and F(z) are related via

z−δF (z) = F∞
0 f (x) (7)

with z = z0x
−β , where z0 is the universal zero of the equation of state in terms of the variable

z. Hence, the expansion coefficients of the two functions can be related to find

f ∞
n = z2n+1−δ

0

r2n+2

F∞
0 (2n + 1)!

(8)

f 0
n = F∞

n

F∞
0

z
−n/β

0 . (9)

Thus, we see it is sufficient to know the expansion coefficients of f (x) in the limits
x → 0 and ∞ in order to calculate the asymptotic properties of F(z) and the interesting
coefficients r2n.

Unlike the limits x → 0 and ∞, near the coexistence curve, x → −1, there are no
rigorous mathematical arguments as to the analyticity properties of f (x), although there do
exist conjectures. For instance, for N > 1 in [15], based on an ε-expansion analysis, it was
conjectured that (1 + x) has a double expansion in powers of y and y(d−2)/2 of the form

1 + x = c1y + c2y
1−ε/2 + d1y

2 + d2y
2−ε/2 + · · · . (10)

In three dimensions it predicts an expansion of (1 + x) in powers of y1/2.
Of course, the behaviour in the vicinity of the coexistence curve depends on the value of

N. For N = 1, the longitudinal correlation length remains finite away from the critical point
on the coexistence curve, while for N > 1, the existence of Goldstone bosons leads to infrared
singularities. For N = 1, one may formally posit that in the vicinity of the coexistence curve

f (x) =
∞∑

n=1

f c
n (1 + x)n (11)

the integer powers being a reflection of the finite longitudinal correlation length. For Ising-like
systems essential singularities are to be expected. Of course, these cannot be captured within
the confines of an ansatz like (11). For N > 1 studies of the nonlinear σ model lead one to
expect a leading behaviour of the form

f (x) ∼ cf (1 + x)2/(d−2) (12)

though, as mentioned, the nature of the corrections to this behaviour is not well understood,
although (10) is one conjecture. In the 1/N expansion there is some evidence [11] for
logarithmic corrections of the form ln(1 + x) in three dimensions.

Early field theoretic calculations using the renormalization group with an ε-expansion
[14] foundered on the fact that they did not exhibit Griffiths analyticity in the large x limit.
Irrespective of the expansion method ε, fixed dimension 1/N etc—there will remain a
fundamental difficulty—that an expansion around a particular fixed point will not readily
access the universal equation of state in the entire phase diagram, due to the presence of other
fixed points that must be accessed. Simply put, the equation of state exhibits crossovers,
and the nature of these crossovers depends on N. For N = 1 the theory is controlled by a
‘Gaussian’ or mean-field fixed point4, wherein fluctuations are suppressed on the coexistence
curve away from the critical point by the non-vanishing longitudinal mass. In distinction, for
N > 1, the theory is dominated by the massless Goldstone excitations on the coexistence
curve and the nonlinear σ model gives a good description [2].

4 Note however that this regime also corresponds to that of the ‘strong-coupling discontinuity’ fixed point [3, 4].
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The problem of incorporating Griffiths analyticity was solved by using a parameterized
formulation in terms of new variables R and θ , related to t and ϕ via

ϕ = m0R
βm(θ) t = R(1 − θ2) H = h0R

βδh(θ),

where the two functions m(θ) and h(θ) are undetermined. In this new parameterization the
scaling variable x and the scaling function f (x) are given by

x = 1 − θ2

θ2
0 − 1

(
m(θ0)

m(θ)

)1/β

(13)

f (x) =
(

m(θ)

m(1)

)−δ
h(θ)

h(1)
. (14)

Most current field theoretic formulations for determining the equation of state (see [1, 11]
for comprehensive reviews) rely on such formulations. The drawback is that the underlying
microscopic theory is not used to determine the functional form of m(θ) and h(θ), rather
an ansatz is made as to the general functional form which depends on certain unknown
parameters and then the underlying microscopic theory is used to fix these parameters. The
most common ansatz is that the functions are polynomials in θ . The coefficients of the powers
of θ are then determined by calculating certain observables independently from the underlying
microscopic theory and then using the values of these observables to determine the coefficients.
Various methodologies have been used [1, 11, 12] using a variety of methods. For instance,
an expansion of the effective potential for small ϕ for t > 0 using ε or fixed-dimension
expansions. Results from Monte Carlo simulations or high temperature expansions have also
been used.

In this paper we apply a new method to describe the equation of state in a uniform
manner. Using environmentally friendly renormalization [9], we find a schema able to capture
the crossover between the Wilson–Fisher fixed point and the fixed point that controls the
coexistence curve. By integrating along curves of constant magnetization, we obtain the
equation of state in the whole critical region. Moreover, the equation of state that we obtain
is parameterized in terms of the inverse of the transverse correlation length, a quantity well
defined over the entire phase diagram. The representation we have found is valid for both
large and small values of the scaling variables and satisfies Griffiths analyticity. Although our
approach works for any N we here concentrate on the case N = 1.

3. A renormalization group representation of the equation of state

In this section we briefly outline the derivation of the equation of state for a theory described
by the standard LGW Hamiltonian with O(N) symmetry

H[ϕ] =
∫

ddx

(
1

2
∇ϕa∇ϕa +

1

2
r(x)ϕaϕa +

λB

4!
(ϕaϕa)2

)
(15)

with r = rc + tB , where rc is the value of r at the critical temperature Tc and tB = 
2 (T −Tc)

Tc
,


 being the microscopic scale. We denote a generic vertex function by �
(N,M)
l...lt ...t , where the

number of l and t subscripts indicates whether a longitudinal or a transverse propagator is
to be attached to the vertex at the corresponding point. When all subscripts are either l or
t we will use a single l or t, for example �

(N,M)
t...t will be abbreviated �

(N,M)
t . Furthermore,

when there are no ϕ2 insertions (i.e. M = 0) the second index will be left off, e.g., �(N)

indicates �(N,0).
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Due to the Ward identities of the model, it is sufficient to know only the �
(N,M)
t , as all the

other vertex functions can be reconstructed from these. The equation of state is

H = �
(2)
t ϕ. (16)

For the Ising system equation (16) can be viewed as the definition of �
(2)
t . The remaining

transverse vertex functions �
(N,M)
t can similarly be identified. The resulting expressions are

equivalent to an analytic continuation of the Ward identities (see [9] for details).

3.1. Renormalization in terms of nonlinear scaling fields

Due to the existence of large fluctuations in the critical regime a renormalization of the
microscopic bare parameters of the form

t (m, κ) = Z−1
ϕ2 (κ)tB(m) (17)

λ(κ) = Zλ(κ)λB (18)

ϕ(κ) = Z−1/2
ϕ (κ)ϕB (19)

must be imposed, where κ is an arbitrary renormalization scale. The renormalized parameters
satisfy the differential equations

κ
dt (κ)

dκ
= γϕ2(κ)t (κ) (20)

κ
dλ(κ)

dκ
= γλ(κ)λ(κ) (21)

κ
dϕ(κ)

dκ
= −1

2
γϕ(κ)ϕ(κ) (22)

where the Wilson functions associated with this coordinate transformation are

γϕ2(κ) = −κ
d

dκ
ln Zϕ2

∣∣∣∣
c

(23)

γλ(κ) = κ
d

dκ
ln Zλ

∣∣∣∣
c

(24)

γϕ(κ) = κ
d

dκ
ln Zϕ

∣∣∣∣
c

(25)

and the derivative is taken along an appropriately chosen curve in the phase diagram, which
we here denote by c. Similarly, integration of the renormalization group equation for any
multiplicatively renormalizable �

(N,M)
t yields

�
(N,M)
t (t, λ, ϕ) = exp

(∫ mt

κ

(
N

2
γϕ − Mγϕ2

)
dx

x

)
�

(N,M)
t (t (κ), λ(κ), ϕ(κ)). (26)

To impose a specific, as opposed to abstract, coordinate transformation between bare and
renormalized theory the renormalization constants Zϕ,Zϕ2 and Zλ must be fixed. Here, we
impose the explicitly magnetization-dependent normalization conditions
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∂p2�
(2)
t (p, t (κ, κ), λ(κ), ϕ(κ), κ)

∣∣
p2=0 = 1 (27)

�
(2,1)
t (0, t (κ, κ), λ(κ), ϕ(κ), κ) = 1 (28)

�
(4)
t (0, t (κ, κ), λ(κ), ϕ(κ), κ) = λ. (29)

Note that in this case we impose the normalization conditions on the transverse correlation
functions. These conditions serve to fix the three Z functions associated with ϕB, tB and λB

while the condition

κ2 = �
(2)
t (0, t (κ, κ), λ(κ), ϕ(κ), κ) (30)

serves as a gauge fixing condition that relates the sliding renormalization scale κ to the
physical temperature t and the physical magnetization ϕ. Physically, κ is a fiducial value of
the nonlinear scaling field mt , which is the inverse transverse correlation length.

Besides mt , the other nonlinear scaling field we use to parameterize our results is

m2
ϕ = 1

3

�
(4)
t ϕ2

∂p2�
(2)
t

∣∣
p2=0

(31)

which is an RG invariant. It represents the anisotropy in the masses of the longitudinal and
transverse modes and is related to the stiffness constant ρs = ϕ2∂p2�

(2)
t

∣∣
p2=0 via m2

ϕ = 1
3λρs .

With a given renormalization prescription one may determine the equation of state in
terms of the nonlinear scaling fields mt and mϕ , as the transverse and longitudinal propagators
that appear in all perturbative diagrams can be parameterized in terms of them. One of the main
motivations for this reparameterization in terms of nonlinear scaling fields is that it eliminates
all tadpole diagrams at higher loop order. However, what is required is the equation of state
in terms of the linear scaling fields t and ϕ. One must therefore determine the coordinate
transformation, t = t (mt ,mϕ), ϕ = ϕ(mt ,mϕ), between them.

3.2. Relating nonlinear and linear scaling fields

This may be done by specifying a particular curve, c, in the phase diagram along which we
integrate the differential relation for the transverse vertex functions �

(N)
t . For example,

d�
(2)
t = �

(2,1)
t dt + 1

6�
(4)
t dϕ2 (32)

can be integrated along a curve of constant ϕ to yield dt = d�
(2)
t

/
�

(2,1)
t , where the right-hand

side is naturally written in the coordinate system (mt ,mϕ). To integrate the renormalization
group equation for the vertex functions it is most natural to use mt = κ as the flow variable
and hold mϕ constant. However, if we then wish to integrate (32) along a curve of constant
ϕ we must include a Jacobian factor, 2/(2 − γλ + γϕ), that takes into account the variation of
mϕ along a constant ϕ curve. The relation between mϕ and ϕ is specified by (31) using the
renormalization group equations for ∂p2�

(2)
t and �

(4)
t with the normalization conditions (27)

and (29). Using (26) for �
(2)
t and �

(2,1)
t and the normalization conditions (28) and (30) one

may write

d�
(2)
t

�
(2,1)
t

= (2 − γϕ) exp

(
−

∫ κ

κ0

γϕ2
dx

x

)
κ dκ. (33)

In the universal limit, where λ → ∞ (this limit can also be accessed by fixing the coupling
at its asymptotic fixed point value), the crossover to mean-field theory is pushed off to infinity
and the theory is then controlled in the limit κ → ∞ by the Wilson–Fisher fixed point. Hence,
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γi → γ WF
i , where γ WF

i is the Wilson function γi at the Wilson–Fisher fixed point. Defining
�γi = (

γi − γ WF
i

)
(33) yields

dt = (2 − γϕ) exp

(
−

∫ κ

κ0

�γϕ2
dx

x

)(
κ

κ0

)−γϕ2

κ dκ. (34)

To integrate (34) we need to fix some boundary condition. The coexistence curve, where
mt = 0, is a natural one. In this case, dt integrates to the temperature variable (T − Tc(ϕ)),
where Tc(ϕ) corresponds to that point on the coexistence curve where the magnetization is ϕ.
As we wish to use as temperature variable t = (T − Tc), we may write (T − Tc(ϕ)) = t + �,
where � = (Tc −Tc(ϕ)) is the temperature shift that measures the distance between the critical
point and the point on the coexistence curve, Tc(ϕ). In the integral, −∫ κ

κ0
�γϕ2 dx/x, one may

safely take the universal limit, κ0 → ∞. In this universal scaling limit, in terms of the linear
scaling fields t and ϕ, the problem has only one scaling variable, x. In terms of the coordinates
mt and mϕ , this manifests itself as a reduction to the single scaling variable, z = mt/mϕ .
Passing to this variable, using (31), and integrating this along a curve of constant ϕ (taking
into account the Jacobian factor) one finds

A1(1 + x) = F(z) (35)

where the scaling variable x = B1/β t/ϕ1/β, B being the non-universal amplitude introduced
previously, and the universal scaling function F(z) is

F(z) =
∫ z

0

2(2 − γϕ)

2 − γλ + γϕ

D(x)x
1
β

dx

x
,

where

D(x) = exp

(
−

∫ x

∞
2

(
�γϕ2 − �γλ

2β
+ �γϕ

2β

2 − γλ + γϕ

)
dy

y

)
. (36)

The quantity A1 is related to the universal zero of the equation of state. In terms of the
amplitude B,

B2 = λ

3κ(4−d−η)
A

2β

1 . (37)

Equation (35) determines the coordinate transformation, t = t (mt ,mϕ) ϕ = ϕ(mt ,mϕ),
in the scaling limit where there is only one relevant scaling variable associated with the linear
scaling fields, x ∼ t/ϕ1/β , and one relevant scaling variable associated with the nonlinear
scaling fields, z = mt/mϕ . Hence, we determine the coordinate transformation x = x(z).
Note that the geometry of this transformation has some unusual properties relative to the (T , ϕ)

plane. The coexistence curve is mapped to the single point x = −1, the critical isotherm is
mapped to the single point x = 0, and the critical isochor, for t > 0, maps to the single point
at infinity. However, the critical point itself—as the intersection of the coexistence curve,
critical isotherm and critical isochor—maps to all these points.

To proceed to the equation of state we use (16) and the renormalization group equation
for �

(2)
t . Once again, passing to the variable z and including in the Jacobian factor, one obtains

H

ϕδ
=

(
λ

3κ2

) (δ−1)

2

G(z), (38)

where the universal scaling function G(z) is given by

G(z) = z
γ

β exp

(
γ

β

∫ z

∞

�γλ − �γϕ

2 − γλ + γϕ

dy

y

)
exp

(
−

∫ z

∞

2�γϕ

2 − γλ + γϕ

dy

y

)
. (39)
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Introducing the scaling variable y = A−1
3 (H/ϕδ), where A3 is related to the non-universal

amplitude Bc via

Bδ
c = A3

(
λ

3κ2

) (δ−1)

2

. (40)

One sees that the universal equation of state is now of the form (1) with

f (x) = 1

A3
G(F−1(A1(1 + x)). (41)

We may now ask what more can be said about A1 and A3, or whether they are simply
non-universal parameters, being related to the non-universal amplitudes Bc and B, that cannot
be determined within the present formalism? A1, in fact, is related to the universal zero
of the equation of state, and may be calculated in the following manner: we choose some
arbitrary value of z, z0, and write F(z) → F(z0) +

∫ z

z0
F(x) dx; then choose z and z0 in the

asymptotic regime z, z0 → ∞ z > z0, wherein, from Griffith’s analyticity, we can write
F(z) = z1/β

∑∞
n=0 F∞

n z−2n. In the limit z → ∞, depending on the value of β, certain terms
in the asymptotic expansion diverge. For instance, for the three-dimensional Ising model, at
one loop, β = 3/10, hence, only the n = 0 and n = 1 terms diverge, while the contributions
from n � 2 → 0. Denoting the divergent part of the expansion as F∞(z); as z0 is constant we
may identify the non-constant term, A1x, in this limit with F∞(z). Hence, we may identify
A1 = limz0→∞(F(z0) − F∞(z0)). In terms of the integrand, I (x), of the scaling function F ,
we may write

A1 =
∫ ∞

0
(I (x) − I∞(x)) dx, (42)

where I∞(x) is defined via F∞ = ∫ z

0 I∞(x) dx. A1 is clearly universal. To determine A3, we
set the condition y = 1 on the critical isotherm t = 0. This corresponds to a particular value,
zc, of z. Hence, A3 = G(zc). To determine zc note that from (36) on the critical isotherm
A1 = F(zc). The inversion of this function allows for the identification of zc. Hence, we
deduce A3 to be

A3 = G(F−1(A1)) (43)

which is, once again, a universal function.
So, given that A3 is determined from A1, and A1 is determined from F by subtracting

off its divergent component as z → ∞, we see that the simple ingredients that enter into
a complete specification of the universal equation of state are the three Wilson functions—
γλ, γϕ2 and γϕ . These are the only quantities that need to be determined perturbatively (or
otherwise).

Note that this equation of state has been determined from a first principles calculation
based on an underlying microscopic model. It is parameterized, but parameterized in a way
that is completely determined by the underlying model. This is in distinction to standard
parametric representations [1, 11], where, after imposing certain analyticity requirements,
there is a large arbitrariness in determining the scaling functions h(θ) and m(θ). In fact,
these functions may depend on an arbitrary number of parameters and, for each parameter, a
universal quantity must be independently calculated in order to fix it. Also, the parameter z

here has a much more transparent and direct physical meaning than θ , being simply the ratio
of the two fundamental nonlinear scaling fields in the problem—mt and mϕ—the transverse
correlation length and the stiffness constant. As these quantities are well defined throughout
the phase diagram this formulation has an added advantage relative to parametric, fixed-
dimension expansions where the relevant nonlinear scaling field used is the mass for T > Tc

and there are difficulties reaching the ordered phase [1].
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In order to determine the expansion coefficients f 0
n and f ∞

n , as introduced in section 1,
one requires the Taylor expansion of f (x) around x = 0 and x = ∞. In terms of our
parametric representation, dnf (x)/dxn can be expressed using d/dx = (dz/dx) d/dz, where
dz/dx = A1/(dF(z)/dz) hence,

dnf (x)

dxn
= A1

A3

((
dF(z)

dz

)−1 d

dz

)n

G(z) (44)

which need to be evaluated at the points of interest z = zc (x = 0), z = ∞ (x = ∞) and z = 0
(x = −1). For instance, taking the limit x → ∞ in (36) and (39), and using the fact that the
Wilson functions γi approach their values at the Wilson–Fisher fixed point so �γi → 0, one
finds

F(z) → γ z1/β (45)

G(z) → z
γ

β . (46)

Hence,

f (x) → A
γ

1

A3
γ −γ xγ + O(xγ−2β) (47)

from which, using (43) we may identify the expansion coefficient

f ∞
0 = (A1/γ )γ

G(F−1(A1))
(48)

which is related to the universal amplitude ratio Rχ via f ∞
0 = R−1

χ . Using the expression for
C+ in our formulation, C+ = κ−(2−η)γ −γ and equations (37) and (40), one can verify that (48)
is identical to the expression Rχ = (C+/Bc)(B/Bc)

δ−1. Similarly, using the expression for
C+

4 in our formulation

C+
4 = −λγ 2γ +dνκ4γ−8+2dν . (49)

One may determine the universal amplitude ratio R+
4 = −C+

4 B2
/
(C+)3 to be

R+
4 = 3(F(zc))

2β

γ γ−dν
. (50)

With these two amplitude ratios in hand two-scale factor universality implies that any other
may be determined.

4. One-loop results

The advantages of the present formulation can be best illustrated by considering a concrete
example. We will consider the universal equation of state in the one-loop approximation, as
at this level it is still possible to obtain analytic or ‘quasi’-analytic results.

We begin with the values of the Wilson functions to one loop. The running dimensionless
coupling λ satisfies

z
dλ(z)

dz
= −ελ + cdλ

2(z)

((
1 +

1

z2

) d−6
2

+
(N − 1)

9

)
, (51)

where cd = 3(4 − d)�((4 − d)/2)/2(4π)d/2. Taking the initial condition λ(z0) = λ, in the
limit z0 → ∞, λ → ∞ one arrives at the universal separatrix solution

λ(z) =
(

cd

((
1 +

1

z2

) d−6
2

+
(N − 1)

9

))−1

; (52)
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this solution may also be reached by choosing the initial coupling to be on the separatrix
solution at z = z0. On the separatrix

γλ = (4 − d)


(

1 + 1
z2

) d−6
2 + (N−1)

9(
1 + 1

z2

) d−4
2 + (N−1)

9


 (53)

γϕ2 = (4 − d)


 (

1 + 1
z2

) d−6
2 + (N−1)

3

3
(
1 + 1

z2

) d−4
2 + (N−1)

3


 (54)

γϕ = 0. (55)

In the limit z → ∞, the Wilson–Fisher fixed point is approached and γi → γ WF
i with, at one

loop, γλ = (4 − d) and γϕ2 = (4 − d)(N + 2)/(N + 8). In contrast, in the limit z → 0 the
strong-coupling fixed point is approached and γi → γ SC

i . For N > 1 the Goldstone bosons
dominate and γλ = γϕ2 = (4 − d). For N = 1 however, this fixed point is mean field like as
fluctuations are suppressed and γi → 0.

In the limit z → ∞, the Wilson functions can be expanded as power series in z−2 for
any N

γi(z) = γ WF
i +

∞∑
n=1

ai(n)z−2n. (56)

Hence, the universal scaling functions F and G can also be written as power series in z−2.
This is true in a diagrammatic expansion to all orders not just at one loop. The limit z → 0 is
more complicated. In this limit, γi → γ SC

i but the nature of the corrections is not obvious. At
the one-loop level, from (53), one can see that the leading corrections to the strong-coupling
fixed point values will be z(4−d)/2.

For N �= 1 analytic progress is difficult. However, for N = 1 these expressions simplify
greatly yielding

γλ = (4 − d)

(
1 +

1

z2

)−1

(57)

γϕ2 = (4 − d)

3

(
1 +

1

z2

)−1

. (58)

With these expressions one can explicitly calculate the scaling functions G(z) and F(z):

G(z) = z2

(
2

(d − 2)
+ z2

) (4−d)

(d−2)

(59)

F(z) = 3

d + 2

((
2

d − 2
+ z2

) 2(4−d)

3(d−2)

(2z2 − 1) +

(
2

d − 2

) 2(4−d)

3(d−2)

)
. (60)

To determine the constant A1 we take the z → ∞ limit of (60), identify the divergent part
with A1x and the constant remainder with A1.5 Note that the case d = 2 is problematic. This

5 If 2(4 − d)/3(d − 2) is a positive integer, n, then this remainder is zero and A1 cannot be determined by looking at
the asymptotic limit z → ∞. This is a pure artefact of the one-loop approximation, where η = 0, and has no physical
meaning.
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is an artefact of the one-loop approximation where, in particular, in d = 2 one has β = 0,
which is clearly unphysical. The case d = 4 is also inaccessible due to the fact that we
took the universal limit λ → ∞. It may be recovered by returning to (51) and integrating
it and not taking this limit. In this case, as expected, logarithms appear. So, equations (59)
and (60) are valid for 2 < d < 4. A3 can be determined as a function of the undetermined A1

using (43). Explicitly, taking the z → ∞ limit A1 can be identified to be

A1 = 3

d + 2

(
2

d − 2

) 2(4−d)

3(d−2)

(61)

from which one determines zc = 2−1/2 which, interestingly, is dimension independent, though,
once again, this is a one-loop artefact. With zc in hand one determines A3 to be

A3 = 1

2

(
d + 2

2(d − 2)

) (4−d)

(d−2)

. (62)

Thus, the one-loop equation of state for N = 1 in d dimensions is

y = 2
2

(d−2)

(d + 2)
(4−d)

(d−2)

z2(2 + (d − 2)z2)
(4−d)

(d−2) (63)

x = (2z2 − 1)(1 + (d − 2)z2/2)
2(4−d)

3(d−2) . (64)

Griffiths analyticity can be seen quite simply from these expressions. For x → ∞ one
has z → ∞ and the right-hand side of (64) takes the form z1/β

∑∞
n=0(cn/z

2n), where
β = 3(d − 2)/2(d + 2). Substituting into (63), one then has the expansion (3), where
γ = 6/(d + 2). Similarly, by expanding (64) around z = zc one obtains the expansion (2).
Finally, in the vicinity of the coexistence curve, from (64) we see that (1+x) can be written as a
power series expansion in z2 and, hence, we verify (11). Once again, within the approximation
used one would not expect essential singularities to appear. To summarize: (63) and (64) have
been determined from first principles from the underlying microscopic theory and obey all
analyticity and other properties required in the different asymptotic regimes.

From these expressions one may calculate analytically the coefficients f 0
n (d) and f ∞

n (d)

as functions of d, as well as derived quantities, such as the r2n, and universal amplitude ratios,
like Rχ and R+

4 . In the same way, we may examine the behaviour in the vicinity of the
coexistence curve. First, we determine z as a power series in (1 + x), and then we replace the
result in the expansion of y for z small.

In table 1 we show the coefficients f 0
1 (d) − f 0

5 (d) and in table 2 f c
1 (d) − f c

3 (d). The
coefficients f ∞

0 (d) − f ∞
5 (d) for arbitrary d appear in table 3. Our results for some important

quantities like r2n(d) appear in table 4. Obviously with analytic expressions in hand it is
straightforward to generate other coefficients.

One may also recover the well-known ε-expansion result by substituting d = 4 − ε

into (63) and (64), obtaining

y = 2
2

(2−ε)

(6 − ε)
ε

(2−ε)

z2(2(1 + z2) − εz2)
ε

(2−ε) (65)

x = (2z2 − 1)(1 + (2 − ε)z2/2)
2ε

3(2−ε) . (66)
Expanding in powers of ε to O(ε) one finds

y = 2z2

(
1 +

ε

2
ln

2(1 + z2)

3

)
(67)
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Table 1. Values of f 0
n for the d-dimensional Ising universality class.

Coefficient Value

f 0
1 3 × 2− 1

3 + 8
3(d−2) (2 + d)

2+d
6−3d

f 0
2 −(d − 4)(2 + d)

4+2d
6−3d 2

8(4−d)
3(d−2)

f 0
3 (1/3) × 2−3+ 8

d−2 (d − 4)(2 + d)
2+d
2−d

f 0
4 (1/27) × 2

70−19d
3d−6 (d − 7)(d − 4)(2 + d)

8+4d
6−3d (8 + d)

f 0
5

(d−16)(d−4)(5+d)(2d−11)

405×2
20(d−4)
3(d−2) (2+d)

5(2+d)
3(d−2)

Table 2. Values of f c
n for the d-dimensional Ising universality class.

Coefficient Value

f c
1 3 × 2

6−d
d−2 (2 + d)

2
2−d

f c
2 3 × 2

10−4d
d−2

(
−3 × 2

2d−2
d−2 + 5 × 2

d
d−2

)
d−4

(2+d)2 (2 + d)
4−d
d−2

f c
3 64

d−1
2−d 4−d

(2+d)3 (2 + d)
4−d
d−2

(
81 × 2

3d+4
d−2 + 47 × 2

2+4d
d−2

− 45 × 32
d

d−2 − 35 × 2
2(3+d)
d−2 d + 9 × 2

2+4d
d−2 d

)

Table 3. Values of f ∞
n for the d-dimensional Ising universality class.

Coefficient Value

f ∞
0

4
1

d−2

(
2+d
d−2

) d−4
d−2

(
2

14−5d
6−3d (d−2)

8−2d
3d−6

) 6
2+d

f ∞
1

4
1

d−2

d−2

(
2

14−5d
6−3d (d − 2)

8−2d
3d−6

) 3(d−4)
2+d

(
2+d
d−2

) d−4
d−2

f ∞
2 −3 × 2

6−2d
d−2

(
d−4
d−2

)(
2

14−5d
6−3d (d − 2)

8−2d
3d−6

) 6(d−3)
2+d

(
2+d
d−2

) d−4
d−2

f ∞
3 2

2(3−d)
d−2 (d−4)(4d−13)

(d−2)3

(
2

14−5d
6−3d (d − 2)

8−2d
3d−6

) 9d−24
2+d

(
2+d
d−2

) d−4
d−2

f ∞
4 2

12−5d
d−2 d−4

(d−2)4

(
2

14−5d
6−3d (d − 2)

8−2d
3d−6

) 12d−30
2+d

(
2+d
d−2

) d−4
d−2

× (17 − 5d)(11d − 32)

f ∞
5

2
2(8d−35)

d−2 (d−2)
50−15d

d−2

(
2+d
d−2

) d−4
d−2

−45

(
2

14−5d
6−3d (d−2)

8−2d
3d−6

) 66
2+d

×
(

176 553 × 2
6d+8
d−2 d

+ 27(2419d − 11973)d22
4(3+d)
d−2 − 189(1520 + 13d4)2

5(2+d)
d−2

)

1 + x = 2z2 +
ε

3
(2z2 − 1) ln(1 + z2). (68)

Inverting (68) in powers of ε and substituting into (67) one finds

y = 1 + x +
ε

2
(1 + x) ln

(x + 3)

3
− ε

3
x ln

(x + 3)

2
(69)

which is the well-known result in terms of normalized variables.
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Table 4. Values of R+
4 , F∞

0 and some r2n coefficients for the d-dimensional Ising universality
class.

Coefficient Value

R+
4

6
d−2

(
2

5
3 + 4

6−3d (d − 2)
8−2d
3d−6

) 3(d−2)
2+d

F∞
0

4
d−1
2−d (d−2)2

(
2+d
d−2

) 4−d
d−2

9

(
2

14−5d
6−3d (d−2)

8−2d
3d−6

) 6(d−3)
2+d

r6 5/2 × (4 − d)(d − 2)

r8 35/6 × (d − 4)(4d − 13)

r10 35/4 × (4 − d)(5d − 17)(11d − 32)

r12 385 × 2
2−6d
d−2

(
665 × 24+ 5d

d−2 − 6539 × 26+ 10
d−2 d

+ 11973 × 2
2+4d
d−2 d2 − 2419 × 2

2+4d
d−2 d3 + 91 × 32

d
d−2 d4

)

4.1. The case d = 3

For d = 3 things are even more transparent, as the parameter z can be totally eliminated,
thereby ending with a direct, unparameterized relation between x and H/ϕδ . For d = 3 the
scaling functions F(z) and G(z) are

F(z) = 2
2
3 3

5
+

3

5
(z2 + 2)

2
3 (2z2 − 1) (70)

G(z) = (z4 + 2z2) (71)

while A1 and A3 are given by

A1 = 2
2
3 3

5
A3 = 5

4
. (72)

With these values for the amplitudes A1 and A3 the equation of state in terms of the
variable z is

z4 + 2z2 − 5y

4
= 0 (73)

which can be simply solved (the positive square root is required) and substituted into (70) to
find

2
2
3 x =

(
1 +

(
1 +

5y

4

) 1
2

) 2
3
(

2

(
1 +

5y

4

) 1
2

− 3

)
(74)

which can be seen to satisfy y = 1 at x = 0 and y = 0 at x = −1. For large
x, y → (28/5/5)x6/5, i.e. y ∼ xγ as required by Griffith’s analyticity. It is valid for both
t > 0 and t < 0.

In the second column of table 5 we see the numerical values of the coefficients f 0
n and

f ∞
n , as well as some important derived quantities, such as the r2n. All these values are as

in good an agreement with known values as one might expect from a one-loop calculation,
in those cases where a comparison can be made, with one apparent exception: the value of
r8 is about 2–3 times bigger than the majority of estimates, which are in the range 2.18–2.7.
However, a Monte Carlo simulation of Kim and Landau [10] led to a value of r8 which was
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Figure 1. The scaling function f (x) of the three-dimensional Ising model. The dashed line was
taken from [8].

much larger than other estimates. However, this estimate goes down when we fit with the exact
exponents in the next section. Our value of r10 = −17.5 is in the expected region of previous
calculations, which give estimates in the region (−4)–(−25), though the errors associated
with many of these estimates are large. Our estimate of r12 for d = 3 would seem to be new.
Obviously an important advantage of the present approach is the facility with which the r2n

can be calculated for even very high n. In figure 1 we see a comparison between our one-loop
equation of state and that obtained by the HT method.

5. Fitted exponents

Although one of the chief advantages of the present methodology is the fact that it is
completely self-contained, in that there are no parameters to be fixed by appealing to exogenous
information, as in standard parametric approaches, it is possible to adapt the present method
to utilize information that is available, such as precise estimates for the critical exponents and
amplitude ratios. To illustrate this here, we once again consider the case N = 1. We take
the one-loop ‘crossover’ function (1 + z−2) to give the exact form of the crossover and fit its
asymptotic value to the best estimates for the critical exponents. Hence, we take

γλ = (4 − d)(
1 + 1

z2

) γϕ2 = (2 − 1/ν)(
1 + 1

z2

) γϕ = η(
1 + 1

z2

) . (75)

The crossover form for η is of course a pure supposition given that the form (1+z−2) is derived
from a one-loop calculation. The form of (75) is such as to guarantee a crossover to the known
asymptotic behaviour. The same procedure could be carried out using a two-loop calculation.
In this case the crossover functions for each Wilson function would be different, due to the
fact that different diagrams contribute to them. Once again constants would be introduced to
ensure a crossover in the limit z → ∞ to the correct exponent values for ν and η. With the
ansatz (75) one finds

F(z) =
(

ν

β

) 1
2β 2β(γ − 1)

1 − 2β

[(
γ (1 − 2β)

2ν(γ − 1)
z2 − 1

) (
1 +

β

ν
z2

) 1
2β

−1

+ 1

]
(76)

G(z) = z
γ

β

(
1 +

ν

βz2

) (γ−2β)

2β

. (77)
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Table 5. Numerical values of expansion coefficients for the three-dimensional Ising universality
class: HT results taken from [11], one loop (RG1) and fitted exponents (RGA) results. The
resulting values for the coefficients r2n were obtained from relation (8) and using the values of
f ∞

n .

HT RG1 RGA

f ∞
0 0.6024(15) 0.606 0.596

f ∞
1 0.696 0.793

f ∞
2 0.6 0.613

f ∞
3 0.223 0.151

f ∞
4 −0.066 −0.084

f ∞
5 −0.0454 0.005 27

r6 2.056(5) 2.5 1.938
r8 2.3(1) 5.833 2.505
r10 −13(4) −17.5 −12.599
r12 −192.5 10.902
f 0

1 1.0527(7) 1.034 1.05
f 0

2 0.0446(4) 0.029 0.043
f 0

3 −0.0254(7) −0.0034 −0.0054
f 0

4 0.0007 0.0013
f 0

5 −0.000 19 −0.000 4
f c

1 0.9357(11) 0.96 0.939
f c

2 0.08(7) 0.048 0.076
f c

3 −0.0112 −0.023
f c

4 0.0049 0.0138
f c

5 −0.0028 −0.011
R+

4 7.81(2) 6.892 7.981
F∞

0 0.033 82(15) 0.0347 0.0263

Examining the large z limit one determines the universal amplitude A1 to be

A1 =
(

ν

β

) 1
2β 2β(γ − 1)

1 − 2β
. (78)

Consequently, we determine z2
c = 2ν(γ − 1)/γ (1 − 2β) and

A3 = 2β(γ − 1)

(γ − 2β)

(
2ν(γ − 2β)

2γβ(1 − 2β)

) γ

2β

. (79)

Using this mechanism, in the third column of table 5, we show the results for the three-
dimensional Ising model. The values of the critical exponents that we have used are the best
values reported in the literature [11]. i.e. γ = 1.2372, β = 0.3265 and ν = 0.6301.

Most of the values found with fitted exponents substantially improve the value compared
with the one-loop approximation in those cases where a comparison can be made with HT
expansions. This is particularly notable in r6, r8 and r10. f ∞

0 and F∞
0 are a little puzzling

in this respect. However, it is worth noting the experimental result reported in [11] where
f ∞

0 = 0.5917, this being substantially different from the theoretical value of f ∞
0 = 0.6369

[11]. The only other notable change is that of f ∞
5 , which is related to r12, where there is a

sign change passing from one loop to the adjusted values. In figure 2 we see a comparison
between our three-dimensional Ising model using fitted exponents and the result using high
precision calculations.

In the same way, we can also substitute the well-known exact values for the critical
exponents in the two-dimensional case, i.e. γ = 7/4, β = 1/8 and ν = 1. Table 6 shows the
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Figure 2. The scaling function f (x) of the three-dimensional Ising model using fitted exponents.
The dashed line was taken from [8]. Differences are not visible at this scale.

Table 6. Numerical values of expansion coefficients for the two-dimensional Ising universality
class; high precision (HT ) results taken from [11] and results from using fitted exponents (RGA).

HT RGA

f ∞
0 0.14753 0.1043

f ∞
1 0.1696

f ∞
2 0.2365

f ∞
3 0.2931

r6 3.678 67(7) 2.8571
r8 26.041(11) 15.2381
r10 284.5(2.4) 125.714
r12 4.2(7) × 103 1436.73
f 0

1 1.1724
f 0

2 0.1473
f 0

3 −0.0164
f c

1 0.785
f c

2 0.295
R+

4 7.336 774(10) 9.7594
F∞

0 5.923 57(6) × 10−5 0.100 67

subsequent results. In this case, except for the value of f ∞
0 , the values found for r2n show

significant differences. This probably hints at the inadequacy of the ansatz for the crossover
functions (75). We have not been able to find reported values for the coefficients f 0

n and
f c

n , some of which are reported in table 6. It would be interesting to be able to make the
comparison.

6. Conclusions

Using environmentally friendly renormalization we derived a formal expression for the
equation of state for the O(N) model. This expression has the advantages that (i) it is
derived from an underlying microscopic (field-theoretic) model; (ii) requires as input for
any calculation only the three crossover Wilson functions associated with a magnetization-
dependent renormalization of the field, ϕ, the composite operator, ϕ2, and the coupling
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constant, λ. In particular no experimental input is required in order to fix parameters; (iii)
it is parameterized by two nonlinear scaling fields—the transverse mass, and an anisotropy
parameter closely related to the stiffness constant; (iv) it manifestly expresses all relevant,
desired analyticity properties, both in the critical region and on the coexistence curve; (v)
universal coefficients associated with the expansion of the equation of state in any of the
asymptotic regimes may be simply calculated thereby obtaining coefficients that are presently
unknown.

After deriving one-loop expressions for general N, the formulation was then used to
calculate a parameterized, analytic expression for the equation of state for N = 1 for
2 < d < 4. For d = 3 it was shown how the parameterization could be dispensed with
and a closed-form non-parameterized expression for the equation of state derived. Various
universal coefficients associated with the asymptotic regimes x = 0, x = ∞ and x = −1
were derived for arbitrary d. For d = 3 these were compared with previous results.

By taking the functional form for the Wilson functions at one loop and introducing
constants to fit to the best-known asymptotic values of the critical exponents, comparison was
made for d = 3 and d = 2 between our calculated expansion coefficients and those, where
known, as derived using HT expansions, Monte Carlo, etc, in the different asymptotic regimes.
In most cases the fitted values were substantially better than the one-loop values, agreement
being better for d = 3 than d = 2.

When continued to complex values of the external magnetic field the universal equation
of state should also capture the Lee-Yang edge. There are additional points of non-analyticity
in our expressions at z2

LY = −2/(d − 2) or z2
LY = −ν/β. These imaginary values of z

are naturally associated with the Lee-Yang edge singularities. However, our equation of
state is not yet optimized to include the associated crossover and we do not expect to obtain
good estimates for the associated universal exponents or amplitudes. Our formulation can be
adjusted to include this additional singularity, but as of yet we have not studied the effect of
including this crossover. We hope to return to this in the future.
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